

Engineering Program				
Specialty	Medical Equipment Technology			
Course Number	020406253			
Course Title	Digital Signal Processing			
Credit Hours	3			
Theoretical Hours	3			
Practical Hours	0			

Brief Course Description:

• Students should acquire a *Theoretical* knowledge about: Sinusoids, Spectrum representation, Sampling and Aliasing, and FIR filters.

Detailed Course Description:

Unit Number	Unit Name	Unit Content	Time Needed
1	Introduction	Mathematical Representation of Signals Mathematical Representation of Systems	
2	Sinusoids	Review of Sine and Cosine Functions Sinusoidal Signals Sampling and Plotting Sinusoids Complex Exponentials and Phasors Phasor Addition	
3	Spectrum Representation	The Spectrum of a Sum of Sinusoids Beat Notes Periodic Waveforms Fourier Series Spectrum of the Fourier Series Fourier Analysis of Periodic Signals Time-Frequency Spectrum	
4	Sampling and Aliasing	Sampling Spectrum View of Sampling and Reconstruction Strobe Demonstration Discrete-to-Continuous Conversion The Sampling Theorem	
5	FIR Filters	Discrete-Time Systems The Running-Average Filter The General FIR Filter Implementation of FIR Filters Linear Time-Invariant (LTI) Systems	

Al-Balqa' Applied University

جامعة البلقاء التطبيقية

Convolution and LTI Systems
Cascaded LTI Systems
Example of FIR Filtering

Evaluation Strategies:

Exams		Percentage	Date
Exams	Med-Term Exam	40%	/
	Final Exam	50%	//
Homework and Projects		10%	/

Teaching Methodology:

- **❖** Lectures
- **❖** Data Show

Text Books:

• Signal Processing First, James H. McClellan & Ronald W. Schafer.