

كلية المندسة التكنولوجية

جامعة البلغاء التطبيغية

النظا الحراسية لبرنامج الشماحة الجامعية المتوسطة تخصص الأتمتة الصناعية 2008/2009

بإشراف عميد الكلية الأستاذ الدكتور فاطو جابر

Curriculum for Associate Degree in Industrial Automation Specialization

The curriculum of associate degree in "Industrial Automation" specialization consists of (72 credit hours) as follows:

Serial No.	Requirements	Credit Hours
First	University Requirements	12
Second	Engineering Program Requirements	17
Third	Third Specialization Requirements	
Total		72

The study plan of a diploma degree in Industrial Automation

First: University requirements (12 credit hours) as follows:

Course No.	C T'41-	Credit	Weekly Contact Hours		Duomo quigito
	Course Title	Hours	Theoretical	Practical	Prerequisite
22001101	Arabic Language	3	3	-	
22002101	English Language	3	3	_	
21901100	Islamic Culture	3	3	_	
21702101	Computer Skills	3	1	4	
	Total	12	10	4	

Second: Engineering Program requirements (17 credit hours) as follows:

Course Title		Credit	Weekly Contact Hours		Prerequisite
No	Course Title	Hours	Theoretical	Practical	1 Tel equisite
20201111	Engineering Workshops	1	_	3	-
20204111	AutoCAD	2	_	6	_
20506111	Occupational Safety	2	2	_	-
21301111	General Mathematics	3	2	2	_
21302111	General Physics	3	2	2	-
21302112	General Physics Laboratory	1	-	3	-
21702111	Communication Skills and Technical Writing	3	2	2	22002101
20201121	Engineering Materials	2	2	_	-
	Total	17	10	18	

جامعة البلقاء التطبيقية

Third: Specialization Requirements (43 credit hours) as follows:

Course No.	Course Title	Credit	Weekly Contact Hours		Prerequisite
	Course Title	Hours	Theoretical	Practical	Trerequisite
20301113	Electrical Circuits	3	3	-	21302111*
20301114	Electrical Circuits lab	1	_	3	203011138
20403111	Electronics	3	3	_	20301113*
20403112	Electronics Lab	1	-	3	20403111*
20404121	Digital Fundamentals	2	2	-	20403111
20404122	Digital Fundamentals Laboratory	1	-	3	20404121*
20401111	Power Electronics	3	3	_	20403111
20401112	Power Electronics Lab	1	_	3	20401111*
20304111	Electrical Machines	3	3	_	20301113
20304112	Electrical Machines Lab	1	_	3	20304111*
20307211	Control Technology	2	2	_	_
20307212	Control Technology Laboratory	1	-	3	20307211*
20307231	Electrical Motor Drive Systems	3	3	-	20304111
20307232	Electrical Motor Drive Systems lab	1	-	3	20307231*
20404211	Microprocessors	3	3	_	20404121
20404212	Microprocessors Laboratory	1	-	3	20404211*
20307221	Programmable Logic Controllers	3	3	_	20404121
20307222	Programmable Logic Controllers Laboratory	1	-	3	20307221*
20304241	Protection and Control Devices	2	2	_	
20304242	Protection and Control Devices Lab.	1	-	3	20304241*
20307291	Training**	3	_	_	_
20307292	Project	3	-	_	_
	Total	43	27	30	-

^{*} Co-requisite

هَا صَبِي وَالْمُعَلِدُ لِمُعَا

^{**} Equivalent to 280 training hours

جامعة البلقاء التطبيقية

Guiding Plan

First Year					
First Semester Second Semester					
Course ID	Course Name	Credit Hours	Course ID	Course Name	Credit Hours
22002101	English Language	3	22001101	Arabic Language	3
21702101	Computer Skills	3	20204111	AutoCAD	2
20201121	Engineering Materials	2	20506111	Occupational Safety	2
21901100	Islamic Culture	3	20201111	Engineering Workshops	1
21301111	General Mathematics	3	20404121	Digital Fundamentals	2
20403111	Electronics	3	20301113	Electrical Circuits	3
20403112	Electronics Lab.	1	20301114	Electrical circuits Lab.	1
			21302111	General Physics	3
			21302112	General Physics Lab.	1
Total		18	Total		18

Second Year					
	Third Semester		Fourth Semester		
Course ID	Course Name	Credit Hours	Course ID	Course Name	Credit Hours
20401112	Power Electronics Lab.	1	20307221	PLCs	3
20304241	Protection and Control Devices	2	20307222	PLCs Lab.	1
20304242	Protection and Control Devices Lab.	1	20307291	Training	3
20404122	Digital fundamentals Lab.	1	20307292	Project	3
20304111	Electrical Machines	3	20307231	Electrical Motor Drive Systems	3
20307211	Control Technology	2	20307232	Electrical Motor Drive Systems Lab.	1
20307212	Control Technology Lab.	1	20404211	Microprocessors	3
20304114	Electrical Machines Lab.	1	20404212	Microprocessors Lab.	1
20401111	Power Electronics	3			
21702111	Communication Skills and Technical writing	3			
Total		18	Total		18

جامعة البلهاء التطبيهية

Brief Description for Associate Degree in Engineering Program Specializations *University Requirements*

Course Title	Course No	Credit Hours (Theoretical /Practical)
Arabic Language	22001101	3 (3-0)

تتضمن هذه المادة مجموعة من المهارات اللغوية بمستوياتها وأنظمتها المختلفة: الصوتية، والصرفية، والنحوية، والبلاغية، والمعجمية، والتعبيرية، وقصصية ، من بينها نماذج من النصوص المشرقة: قرآنية ، وشعرية، وقصصية ، من بينها نماذج من الأدب الأردني؛ يتوخى من قراءتها وتذوقها وتحليلها تحليلا أدبيا؛ تنمية الذوق الجمالي لدى الطلاب الدارسين.

English Language 22002101 3 (3-0)

English 1 is a general course. It covers the syllabuses of listening, speaking, reading, writing, pronunciation and grammar, which are provided in a communicative context. The course is designed for foreign learners of the English language, who have had more than one year of English language study. The extension part would be dealt with in the class situation following the individual differences.

Islamic Culture 21901100 3 (3-0)

- 1. تعريف الثقافة الإسلامية وبيان معانيها وموضوعاتها والنظم المتعلقة بها وظائفها وأهدافها.
 - 2. مصادر ومقومات الثقافة الإسلامية والأركان والأسس التي تقوم عليها.
 - 3. خصائص الثقافة الإسلامية.
 - 4. الإسلام والعلم، والعلاقة بين العلم والإيمان
 - 5. التحديات التي تواجه الثقافة الإسلامية.
 - 6. رد الشبهات التي تثار حول الإسلام.
 - 7. الأخلاق الإسلامية والآداب الشرعية في إطار الثقافة الإسلامية.
 - 8. النظم الاسلامية.

Computer Skills 21702101 3 (1-4)

An introduction to computing and the broad field of information technology is given. Topics covered include the basic structure of digital computer system, microcomputer, operating systems, application software, data communication and networks, and the internet. Handson learning emphasizes Windows xp, MS-office2000, and the internet.

جامعة البلغاء التطبيقية

	_	_	
Engineering	Program	reauirem	ents

ngineering Program requirements		
Engineering Workshops	20201111	1 (0-3)
Development of basic manual skills in	n Mechanical and Electrical w	orks. Use of manual tools and
measuring devices. Hand filing, weldi	ing, metal cutting and forming.	Electrical wiring.
AutoCAD	20204111	2 (0-6)
Introduction to AutoCAD, application	of AutoCAD, commands, geo	ometric entities. Geometric
construction. Dimensioning, free -har	nd sketching, object representa	tion, orthographic drawing
and projections.		
Occupational safety	20506111	2 (2-0)
Role of technicians in economic dev	elopment First aid accident p	prevention. Protective devices
and equipment. Industrial safety st	tandards. Nature of fire haz	zards. Sand fire regulations.
Physiological effects of electrical sho	ck on human body. First aid a	nd treatment for the effects of
electric shock. Rules of spare and che	micals storage and handing.	
Communication Skills and	21702111	3 (2-2)
Technical Writing	21/02111	3 (2-2)
The main goal of this course is to eq	uip the students with the nece	ssary communication skills in
everyday life & work situations and	improve their abilities in tech	nnical writing to meet market
needs. For this course, the English	language is the language of	of teaching & the means of
communication for all classroom situa	ations.	
Engineering Materials	20201121	2 (2-0)
Definition of engineering materials.	Classification of materials and	their properties. Metallic and
non-metallic materials. Metals, allo	ys and composite materials.	Conductors, insulators and
semiconductors. Mechanical, Magne	etic, Thermal and electrical	characteristics of materials.
Industrial applications of different typ	es of materials.	
General Mathematics	21301111	3 (2-2)
Real numbers coordinate planes, lines	s, distance and circles. Function	ons: (operations and graphs on
functions), limits, continuity, limits a	and continuity of trigonometri	ic functions. Exponential and
logarithmic functions. Differentiation	on (techniques of different	iation, chain rule, implicit
differentiation). Application of dif	fferentiation (increase, decre	ease, concavity). Graphs of
polynomials. Applications: Rolls	Theorem and Mean-Value	Theorem, Integration (by
substitution, definite integral, fundam	nental theorem of Calculus). A	pplication of definite integral
(area between two curves, volumes)		
General Physics	21302111	3 (2-2)
Physics and measurement, motion in o	one dimension, vectors, laws o	f motion, circular motion,
energy and energy transfer, potential of	energy, linear momentum and	collisions, electric fields,
Gauss's law, electric potential, capacit	tance and dielectrics, current a	nd resistance, direct current
circuits, magnetic fields, sources of th	e magnetic field, and Faraday'	s law of electromagnetic
induction.	// 54	LIE STEELS OF THE
General Physics lab	21302112	1 (0-3)
In this course, the student performs th	irteen experiments in mechani	cs and in electricity.
	N.S.	.27/

جامعة البلقاء التطبيقية

Specialization 1	Requirements
------------------	--------------

Electrical Circuits 20301113 3 (3-0)

Voltage, Current, and Resistance, Ohm's Law, Energy and Power, Series-Parallel Circuits, Introduction to Alternating Current and Voltage, Capacitors, Inductors, RLC Circuits and Resonance. Electrical Measurements.

Electrical Circuits Lab. 20301112 1 (0-3)

DC and AC circuits. Resonance. Measuring devices.

Electronics 20403111 3 (3-0)

Semiconductor devices. Diodes: classification, characteristics and applications. Transistors: classification, characteristics and applications. Amplifiers. Oscillators. Logic gates and Integrated circuits: Basic functions, symbols and applications. Introduction to electronic measurements: Oscilloscope applications.

Electronics Lab. 20403112 1 (0-3)

Use of oscilloscope in measurements. Investigation of characteristics of semiconductor devices. Construction and study of electronic circuits. Experiments in electronics have to cover the main electronic devices (diode, zener diode, diode applications, BJT, FET, op – amp, oscillator, SCR).

Digital Fundamentals 20404121 2 (2-0)

Study of numerical systems, theory of Boolean algebra and logic circuits, applications to different types of circuits, study of flip-flops, counters, registers and accumulators, digital system memory including ROM, RAM, and EPROM.

Digital Fundamentals Lab. 20404122 1 (0-3)

Testing and troubleshooting instruments, Logic circuits, adders, comparators, encoders and decoders, flip-flops, counters, registers, memories RAM, ROM, EPROM.

Power Electronics 20401111 3 (3-0)

Principles and Methods of Electric Power Conversion. Complementary Components and Systems. AC-to-DC Converters. AC-to-AC Converters. DC-to-DC Converters. DC-to-AC Converters. Switching Power Supplies. Power Semiconductor Devices. List of Principal Symbols. Semiconductor Power Switches. Phase-Controlled Converters. Cycloconverters. Voltage-Fed Converters. Current-Fed Converters. Choppers. Basic calculations. Waveforms. Applications

Power Electronics Lab. 20401112 1 (0-3)

Test of semiconductor devices. Investigation of characteristics of power electronics devices. Investigation of rectifier, chopper, and inverter circuits under different loads (R, L-loads).

جامعة البلقاء التطبيقية

Control Technology	20307211	3 (3-0)				
Basic concepts. Open-loop and closed loop control systems. Representation of systems using block diagrams, transfer functions and frequency characteristics. Modes of linear control. Controller tuning. PC-based control systems.						
Control Technology Lab.	20307212	1 (0-3)				
Experimental study and investigation of operusing mathematical and physical models. St	1 1 1					
Electrical Machines	20304111	3 (3-0)				
This course throws light on all types of electrical machines ,transformers ,motors, ,generators ,special machines ,These machines which may face a diploma holder in his practical life ,He must be aware of many related things about these machines ,construction ,principles of operation , characteristics , applications , maintenance .						
Electrical Machines Lab.	20304114	1 (0-3)				
This course focus ,on connection of various and efficiency ,speed control and mechanica characteristics of generators.						
Electrical Motor Drive Systems	20307231	3 (3-0)				
Definition of electrical drive system. Elements of electrical drive system. DC and AC drive systems. Conversion of electrical energy into mechanical energy. Transmission of mechanical power. Main characteristics and modes of drive systems. Principles of speed control in drive systems using timers, relays, limit switches and speed signals. Open-loop speed control using variable voltage, flux and resistance in armature circuit. Closed-loop control of motor speed. Servo drives systems. Static control using ICs, and microprocessors						
Electrical Motor Drive Systems Lab.	20307232	1 (0-3)				
Investigation of torque/speed characteristic drive systems. Speed control. Effect of feed	s of drive systems. Automatic sta	art, stop and reverse of				
Investigation of torque/speed characteristic	s of drive systems. Automatic sta	art, stop and reverse of				
Investigation of torque/speed characteristic drive systems. Speed control. Effect of feed	s of drive systems. Automatic stadback on torque/ speed characteri 20404211 ure, instruction set, assemblers	art, stop and reverse of stics. Servo drives 3 (3-0)				
Investigation of torque/speed characteristic drive systems. Speed control. Effect of feed Microprocessors Introduction to microprocessors architecture	s of drive systems. Automatic stadback on torque/ speed characteri 20404211 ure, instruction set, assemblers	art, stop and reverse of stics. Servo drives 3 (3-0)				

Data transfer, Arithmetic Operations, Looping, Subroutines, General programs, Applications.

جامعة البلقاء التطبيقية

Protection and Control Devices	20304241	2 (2-0)
---------------------------------------	----------	---------

Basic concepts and definitions. Normal and up-normal operating conditions. Faults and their causes. Protection. Protection devices: classification, applications, basic structure and principle of operation, characteristics. Ratings of protection devices, troubleshooting and calibration. Selection of protection devices.

Protection and Control Devices Lab. 20304242 1 (0-3)

The course aims at giving the students practical skills in order to select ,wire troubleshoot and maintain the most common control and protection devices like fuses ,circuit breakers , relays ,contactors ,timers ,switches ,and measuring transformers

Programmable Logic Controllers 20307221 3 (3-0)

Comparison between relays and programmable controllers, basic structure of PLC, cycle-scan. CPU memory, Registers, timers, and counters addresses I/O modules, interfacing programming instructions, Programming devices programming procedures, peripheral equipments, troubleshooting and maintenance

Programmable Logic Controllers Lab. 20307222 1 (0-3)

Realizing a definite number of cycle for two double acting cylinders, Realizing a di8screate time-driver sequential control system by using limit switches or proximity switches, Realizing a discrete time-driver sequential control system, Investigating TON and TOFF timers with practical application, Investigating TRTG and TMOPN timers with practical application, Investigating UP and Down gunters with practical application, Investigating UP- down and ring counter with practical application, Application of duty – cycle generator to generate train of pulses, Application of function: move, compare rotate and shift registers, and set-reset function

Training	20307291	3 (280 training
		hours)

Equivalent to (280 hours) of field training targeted to emphasize the ability of students to apply the theories in the real world of the profession.

An integrated assembly/design practical work related to the major fields of study.

Engineering Program

Specialization	Electro-mechanical program	
Course Number	20307212	
Course Title	Control Technology Laboratory	
Credit Hours	1	
Theoretical Hours	-	
Practical Hours	3	
Pre-requisite	20307211*	

Brief Course Description:

Experimental study and investigation of open-loop and closed loop systems and their elements using mathematical and physical models. Study of first and second order systems performance

Course Objectives:

Upon the completion of this course, the student will be able to:

- 1. Build simple control loops and systems
- 2. Distinguish between real systems and their models
- 3. Evaluate performance of simple control systems
- 4. Use PC in simple control actions

Detailed Course Outline:

Unit Number	Unit Title	Unit Content	Time Needed
1.	Elements of automatic control system	•	
2.	Feedback control and control loop diagrams	•	
3.	Stability of automatic control systems	•	
4.	Frequency characteristics and their applications in automatic control systems		
5.	Process time lags		
6.	Servo and motion control systems	•	
7.	Two position control systems	•	
8.	PID generic controllers	•	
9.	Controller tuning		
10.	Examples of motion control systems	· 6.3.	1
11.	PC-based control systems	عا فاج ر الدين دين	(2-)

جامعة البلقاء التطبيقية

Evaluation Strategies:

Exams		Percentage	Date
Exams	Midterm	20%	
	practical Exam		
	Reports	30%	
	Final practical	50%	
	Exam		

Teaching Methodology:

Practical experimental work in small groups

Text Book

1. Laboratory sheets prepared by instructor

Engineering Program

Specialization	Electro-mechanical program
Course Number	20307211
Course Title	Control Technology
Credit Hours	2
Theoretical Hours	2
Practical Hours	-
Pre-requisite	-

جامعة البلهاء التطبيهية

Brief Course Description:

Basic concepts. Open-loop and closed loop control systems. Representation of systems using block diagrams, transfer functions and frequency characteristics. Modes of linear control. Controller tuning. PC-based control systems.

Course Objectives:

Upon the completion of this course, the student will be able to:

- 1. Understand the fundamental control knowledge.
- 2. Develop creative thinking ability in modern control technology.
- 3. Develop problem solving skills.
- 4. Develop learn, how to learn skills and apply learned knowledge in real technical environment.

جامعة البلقاء التطبيقية

Detailed Course Outline:

Unit Number	Unit Title	Unit Content	Time Needed
1.	Fundamentals of automatic control	•	
2.	Elements of automatic control system	•	
3.	Feedback control and control loop diagrams	•	
4.	Transfer functions of first and second order elements	•	
5.	Stability of automatic control systems	•	
6.	Frequency characteristics and their applications in automatic control systems		
7.	Process time lags		
8.	Servo and motion control systems	•	
9.	Two position control systems	•	
10.	PID generic controllers	•	
11.	Controller tuning	•	
12.	Examples of motion control systems		
13.	Introduction to PC-based control systems	•	

Evaluation Strategies:

Evaluation Strategies.		•	
Exams		Percentage	Date
Exams	First Exam	20%	
	Second Exam	20%	
	Final Exam	50%	
Homeworks and quizzes		10%	
		1	(وها شهر را دول
		M. S	ال يا النوة الترسطين

Teaching Methodology:

Lectures and discussions

Text Book

- 1. Industrial control handbook, Hong Kong IGDS 2000, Hong Kong Polytechnic University
- 2. Modern control technology: Components and systems, second edition, Kalian Delmar

References

1. Instrumentation and control, volume 2 of 2-1992, U.S. department of energy. FSC-6910. Washington D.C 20585.

Engineering Program

Specialization	Common
Course Number	20404121
Course Title	Digital Fundamentals
Credit Hours	2
Theoretical Hours	2
Practical Hours	0

جامعة البلقاء التطبيقية

وصف المادة الدراسية:

❖ Study of numerical systems, theory of Boolean algebra and logic circuits, applications to different types of circuits, study of flip-flops, counters, registers and accumulators, digital system memory including ROM, RAM, and EPROM.

أهداف المادة الدراسية:

- 1. To be familiar with number systems and its conversion.
- 2. To understand logic functions, gates, and Boolean algebra.
- 3. To understand combinational circuits.
- 4. To understand sequential logic circuits.
- 5. To be familiar with different types of memory.

جامعة البلغاء التطبيقية

الوصف العام:

رقم الوحدة	اسم الوحدة	محتويات الوحدة	الوصف العاد
1.	NUMBERS SYSTEM AND CODES	 Introduction Decimal, binary, octal and hexadecimal numbers system Number system conversion Binary arithmetic 1's and 2's complement of binary number binary coded decimal (BCD) digital coded (Gray,Excess-3 and ASC II codes) 	2 Weeks
2.	LOGIC GATES	 The inverter The AND gate The OR gate The NAND gate The NOR gate The Exclusive-OR and Exclusive-AND gates Application of logic gates in industry 	2 Weeks
3.	BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION	 Boolean operation and expressions Laws and rule of Boolean algebra De Morgan's theorem Simplifications using Boolean algebra Standard forms of Boolean expression The Karnaugh map Karnaugh map minimization 	2 Weeks
4.	COMBINATIONA L LOGIC	 Implementing combinational logic The universal property of NAND and NOR gates Implementation using NAND and NOR gates Operation with pulse waveforms Troubleshooting and application 	2 Weeks
5.	FUNCTIONS OF COMBINATIONA L LOGIC	 Half adders, full adders, parallel adders Comparators Encoders and decoders Multiplexing 	2 Weeks

جامعة البلغاء التطبيقية

		 Application 	
6.	FLIP-FLOPS	 Sequential logic circuits Edge-trigged Flip-Flops (S-R, J-K, D) Master-slave Flip-Flops Flip-Flop operation characteristic Flip-Flops application 	2 Weeks
7.	COUNTERS	 Asynchronous counters Synchronous counters Up/Down synchronous Cascaded counters Counter application 	2 Weeks
8	SHIFT REGISTERS	 Basic shift registers functions Serial in / serial out shift registers Serial in / parallel out shift registers parallel in / serial out shift registers parallel in / parallel out shift registers 	Week
9	MEMORIES	 Basic of semiconductors memories Read-only memories (ROMs) Programmable ROMs (PROMs and EPROMs) Read/Write Random –Access Memories(RAMs) Memory expansion 	Week

%20	الأول
%20	الثاني
%10	أعمال الفصل
%50	الامتحانات النهائية
	المشروع و الوظائف
	المناقشات و تقديم المحاضر ات

جامعة البلغاء التطبيقية

طرق التدريس:

1. محاضر ات

2. مناقشات

3. عروض power point

الكتب والمراجع:

- 1. Tomas Floyd "Digital Fundamentals" sixth edition, Prentice-Hall, Inc.NJ.,USA,1997
- 2. William Kleitz, "Digital Electronics a practical approach" third edition, prentice-Hall career &technology Englewood Clifts, NJ., USA, 1993.
- 3. Morris Manor: digital design, Prentice Hall

Engineering Program

Specialization	Common
Course Number	20404122
Course Title	Digital Fundamentals Lab
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

جامعة البلقاء التطبيقية

وصف المادة الدراسية:

Testing and troubleshooting instruments, Logic circuits, adders, comparators, encoders and decoders, flip-flops, counters, registers, memories RAM, ROM, EPROM

أهداف المادة الدراسية:

1. This lab course is to provide an introduction to the characteristics of digital logic and the design, construction, testing and debugging of simple digital circuits.

جامعة البلغاء التطبيقية

الوصف العام:

رقم التجربة	اسم التجربة	محتويات التجربة	الزمن (أسبوع)
1.	Testing and troubleshooting instruments		Week
2.	Logic gates	NOT, OR, AND, NOR, NAND, XOR, XNOR	2 Weeks
3.	Boolean algebra and Demorgan theorems		Week
4.	Karnaugh maps		Week
5.	Half-adders, full adders, and parallel adders		Week
6.	comparator		Week
7.	encoders		Week
8.	Decoders and seven- segment display		Week
9.	Multiplexer and de- multiplexer		Week
10	Flip-flop		Week
11.	Asynchronous counters		Week
12	synchronous counters		Week
13	Registers		Week
14	memories	//	Week
15	ALU (Arithmetic Logic Unit)		Week

جامعة البلغاء التطبيقية

طرق التقييم المستخدمة:

	\ \tau_{\tau_{\tau}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
30%	التقارير و المشاركة
20%	الامتحان المتوسط
50%	الامتحان النهائي
	المشروع و الوظائف
	المناقشات و تقديم المحاضرات

طرق التدريس:

- 1. المختبر
- 2. تطبيق التجربة
 - 3. المناقشة
- 4. عروض power point

الكتب والمراجع:

- 1. كراسة مختبر الالكترونيات الرقمية / اعداد: مدرس المادة
- 2. William Kleitz, "Digital Electronics a practical approach" third edition, prentice-Hall career &technology Englewood Clifts, NJ., USA, 1993.
- 3. Morris Manor: digital design, Prentice Hall

Engineering Program

Specialization	Common Course
Course Number	20301113
Course Title	Electrical Circuits
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

جامعة الراهاء التطريهية

وصف المادة الدراسية:

❖ Voltage, Current, and Resistance, Ohm's Law, Energy and Power, Series-Parallel Circuits, Introduction to Alternating Current and Voltage, Capacitors, Inductors, RLC Circuits and Resonance. Electrical Measurements.

أهداف المادة الدراسية:

بعد دراسة هذه المادة يتوقع من الطالب أن يكون قادراً على تحقيق الأهداف التالية:

- 1. Define and study current and voltage sources.
- 2. Use Ohm and kirchoff's laws for analyzing DC electrical circuits.
- 3. Study the elements of AC circuits.
- 4. Study the RLC in AC circuits.

الوصف العام:

			الوصف العام.
رقم الوحدة	اسم الوحدة	محتويات الوحدة	الزمن بالاسبوع
1.	Voltage, Current, and Resistance	 Atomic Structure Electrical Charge Voltage, Current, and Resistance Voltage and Current Sources Resistors The Electric Circuit DC Circuit Measurements Electrical Safety 	2
2.	Ohm's Law, Energy and Power	 The Relationship of Current, Voltage, and Resistance Calculating Current Calculating Voltage Calculating Resistance Energy and Power Power in an Electric Circuit Resistor Power Ratings Energy Conversion and Voltage Drop in Resistance Power Supplies 	2
3.	Series Circuits	 Resistors in Series Current in a Series Circuit Total Series Resistance Application of Ohm's Law Voltage Sources in Series Kirchhoff's Voltage Law Voltage dividers Power in Series Circuits 	1

جامعة البلغاء التطبيغية

4.	Parallel Circuits	 Resistors in Parallel Voltage in a Parallel Circuit Kirchhoff's Current Law Total Parallel Resistance Application of Ohm's Law Current Sources in Parallel Current Dividers Power in Parallel Circuits 	1
5.	Series-Parallel Circuits	 Identifying Series-Parallel Relationships Calculations of Series-Parallel Resistive Circuits Voltage Dividers with Resistive Loads The Wheatstone Bridge The Superposition Theorem 	3
6.	Introduction to Alternating Current and Voltage	 The Sinusoidal Waveform Sinusoidal Voltage Sources Sinusoidal Voltage and Current Values Angular Measurement of a Sine Wave The Sine Wave Formula Introduction to Phasors Analysis of AC Circuits Superimposed DC and AC Voltages Nonsinusoidal Waveforms The Oscilloscope Concepts of phasors, complex numbers, rectangular and polar forms of complex numbers, mathematical operations. Three-phase voltage and current 	5

		 Y and Δ connections Line and phase voltages and currents Power calculations in three-phase circuits Generation of three phase voltage Inter connections of three phase voltage and currents in star connection (Y) and delta connection (Δ) Mesh method of connection loads with alternator Active, reactive and apparent power in three phase circuits Analysis of balanced phase circuits Balanced and unbalanced three-phase circuits. AC circuit measurement The Basic Capacitor 	
7.	Capacitors	 Types of Capacitors Series Capacitors Parallel Capacitors Capacitors in DC Circuits Capacitors in AC Circuits 	1
8.	Inductors	 The Basic Inductor Types of Inductors Series and Parallel Inductors Inductors in DC Circuits Inductors in AC Circuits 	1
9.	RLC Circuits and Resonance	 RC Circuits RL Circuits RLC Circuits Resonance circuit 	2

جامعة البلقاء التطبيقية

طرق التقييم المستخدمة:

التاريخ	نسبة الامتحان من العلامة الكلية	الإمتحانات
	20%	الأول
	20%	الثاني
	10%	أعمال الفصل
	50%	الامتحانات النهائية
		المشروع و الوظائف
		المناقشات و تقديم المحاضرات

طرق التدريس:

❖ يحدد عضو هيئة التدريس الطريقة المستخدمة من خلال (محاضرة، عرض، مناقشات، مختبرات).

الكتب و المراجع:

الكتاب المقرر:

1. Thomas L. Floyd "principles of electric circuits", Prentice Hall, 2007, ISBN-10: 0132383519

المراجع:

- 1. Robert L. Boylested "introductory circuit analysis" prentice-hall Inc 1997
- 2. Thomas L. Floyd "principles of electric circuits" charlese, Merrill publishing company,1981
- 3. Noel M. Morris and Frank W.Senior "electric circuits analysis" USA NY,1977

Engineering Program

Specialization	Common Course
Course Number	20301114
Course Title	Electrical Circuits Lab
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

جامعة البلقاء التطبيقية

وصف المادة الدراسية:

❖ DC circuit analysis, Ac circuit analysis, Resonance. Electrical measurements. The Oscilloscope and its applications in measurements.

أهداف المادة الدراسية:

بعد دراسة هذه المادة يتوقع من الطالب أن يكون قادراً على تحقيق الأهداف التالية:

- 1. Measure voltages and currents to verify KVL and KCL.
- 2. Identify shorts and opens in a malfunctioning circuit, and define and verify the equivalent resistance of a given network
- 3. Measure the inductance of an inductor.
- 4. Measure the capacitance of a capacitor.
- 5. To be familiar with an AC oscilloscope measurement
- 6. Identify resonance circuit.

جامعة البلغاء التطبيقية

الوصف العام:

رقم الوحدة	اسم الوحدة	محتويات الوحدة	الزمن
			بالاسبوع
1.	Resistor and color code		2
2.	Series DC circuits		2
3.	Series and parallel DC circuits		2
4.	Superposition principles		2
5.	The Oscilloscope		3
6.	RLC components		3
7.	Resonant circuits		2

جامعة الرلقاء التطريقية

طرق التقييم المستخدمة:

التاريخ	نسبة الامتحان من العلامة الكلبة	الامتحانات
	30%	التقارير و المشاركة
	20%	الامتحان المتوسط
	50%	الامتحان النهائي
***************************************		المشروع و الوظائف
		المناقشات و تقديم المحاضرات

طرق التدريس:

تطرق المديقات عملية في المختبر الكتب و المراجع:

الكتاب المقرر:

1. أدلة التجارب العملية الخاصة بالمختبر.

المراجع:

- 1. Robert L. Boylested "introductory circuit analysis" printce-hall Inc 1997
- 2. Thomas L. Floyd "principles of electric circuits" charlese, Merrill publishing company,1981
- 3. Noel M. Morris and Frank W.Senior "electric circuits analysis" USA NY,1977

Program	Engineering
Specialization	Electrical Power Systems
Course Number	20304112
Course Title	Electrical Machines (1)
Credit Hours	2
Theoretical Hours	2
Practical Hours	0

□ Brief Course Description:

This Course covers; constructional features, principles of operation, classification, equivalent circuits, parameters evaluation, characteristics, testing and applications of DC machines and transformers.

□ Course Objectives:

The student should be able to;

- 1. Explain the principles of electromagnetism.
- 2. Describe the construction of DC machines and methods of excitation.
- 3. Describe the characteristics of DC generators.
- 4. Describe the methods of; starting, speed control and reversing the direction of rotation of DC motors.
- 5. Describe the construction of single phase transformers.
- 6. Determine the transformer equivalent circuit, parameters, voltage regulation and efficiency.
- 7. Explain the methods of connections of three- phase transformer windings.
- 8. Name the conditions of parallel operations of single phase and three phase transformer.

□ Detailed Course Description:

Unit Number	Unit name	Unit Content	Time Needed		
1.	Electromagnetic	 Introduction. Motional voltage, e. Electromagnetic Force,f. Basic Structure of Electric Machine 			
2.	DC Machine	 Construction Evolution of DC Machine Armature Windings; Lap winding, wave winding Armature Voltage Electromagnetic Torque Magnetization (saturation) curve of a DC Machine 			
3	DC Generators	 Separately Excited DC Generator Shunt Excited DC Generator Series Excited DC Generator Compound Excited DC Generator Armature Reaction of DC Generators Current commutation in DC Machine Characteristic of DC Generators 			

جامعة البلغاء التطبيغية

أسست عام 1997

4	DC Motors	 Separately Excited DC 		
4	DC Motors	 Separately Excited DC Motor 		
		• Shunt Motor		
		 Series Motor 		
		 Compound Motors 		
		■ Torque – speed		
		characteristics of DC Motors		
		 Power flow and efficiency in 		
		DC Machines		
5	Speed control of DC	Armature Voltage control.		
	Motors	Field control.		
		 Armature Resistance control 		
6	Magnetic circuits	■ I-H Relation		
	of Transformers	■ B-H Relation		
		 Magnetic Equivalent circuit 		
		Magnetic curve		
		Inductance		
		InductanceHysteresis losses		
		Eddy current losses		
		Core losses		
7	Transformers			
/	1 ranstormers	Construction of single		
		phase Transformer		
		• EMF of Transformer		
		Ideal Transformer		
		 Impedance Transfer 		
		 Polarity of Transformer 		

جامعة البلغاء التطبيعية

1997 de Cum

9	Practical Transformer Autotransformers	 Referred Equivalent parameters Determination of equivalent parameters Transformer Ratings No- Load Test Short – circuit Test Efficiency of Transformer; Maximum Efficiency, All – Day (Energy) Efficiency Voltage Regulation 	
10	Three – phase Transformer	 Re Bank of three single-phase Transformers Three – phase Transformer on a common Magnetic core (Three – Phase Unit Transformer) Parallel Operation of Tree Phase Transformers 	

П

جامعة البلغاء التطبيغية

□ Evaluation Strategies:

		Percentage	Date
1. Exams	First Exam	20%	
	Second Exam	20%	
	Assignments	10%	
	Final Exam	50%	

	Teachi	ing I	Meth	odo	logy:
_					

1	T ,	
- 1	Lecture	

□ Textbook:

Principles of Electric Machines and power Electronics; P.C. Sen.John Wiley & Sons, INC, 1997.

□ References:

- 1. Electric Machinery Fundamentals; Stephen J. Chapman, Mc GRAW Hill, 1996.
- 2. Small Electric motors; (Helmut Moczala, Jurgen Draeger, Herman Kraub, 1998.
- 3. Electric Machines; M.S sarma, west publishing company, 1994.
- 4. Electrical Power Technology; D. Tyler, 1998.

Program	Engineering
Specialization	Electrical Power Systems
Course Number	20304113
Course Title	Electrical Machines (2)
Credit Hours	2
Theoretical Hours	2
Practical Hours	0

□ Brief Course Description:

This Course covers constructional features, principles of operation, classification, equivalent circuits, parameters evaluation, characteristics, testing and applications of Induction & Synchronous Machines.

□ Course Objectives:

The student should be able to:

- 1. Describe the construction, types and operation of single & three- phase induction motors.
- 2. Describe the methods of starting & speed control of single & three- phase induction motors.
- 3. Describe the construction, operation & application of synchronous machines.
- 4. Describe methods of starting of Synchronous motors
- 5. Explain the characteristics of synchronous generators.
- 6. Understand the parallel operation of synchronous generators.

□ Detailed Course Description:

Unit Number	Unit name	Content	Time Needed
1.	Induction Machines (3- Phase)	 Constructional features Rotating Magnetic field Induced voltage 	
2.	Polyphase Induction Machine	Standstill operationInduction regulatorRunning Operation	
3	Modes of operation of Induction Machine	MotoringGeneratingPlugging	
4	Equivalent circuit of Induction Machine	 Stator windings Rotor Circuit Complete Equivalent Circuit Approximate Equivalent Circuit 	
5	Operation of Induction Motors	 No- Load Test Blocked – Rotor Test Performance Characteristics. Efficiency and Power Flow 	

سست عام 1997

7	Single – phase Induction Motors	 Types of Induction Motors and speed control. Wound Rotor Motor. Squirrel – cage Motors; deep – Bar squirrel cage motor and double- cage squirrel- cage motor. Speed control; pole changing, line voltage control, line frequency control and Rotor resistance control. Starting of Induction Motors. Introduction Double revolving field theory; Rotor at standstill, Rotor running, pulsating Torque. Types of 1- phase Induction Motors; split – phase Motors, capacitor- start Motor, capacitor – start capacitor- Run Motor, shaded – Pole Motor. Characteristics & typical application.
8	Synchronous Machines	 Introduction. Construction of three- phase synchronous machine. Equivalent circuit of a synchronous machine

جامعة البلغاء التطبيغية

أسست عام 1997

9	Synchronous Machines	 Principle of operator & Types. Characteristic. Parallel Operation of Alternators. Armature Reaction. 	
10	Determination of the Synchronous Reactance Xs	 Open- circuit test. Short – circuit test. Unsaturated synchronous reactance. Saturated synchronous reactance. Phaser diagram. 	
11	Synchronous Motors	 Principle of operation Power & Torque characteristics Power factor control Starting of synchronous Motors; starting with variable – frequency supply, starting as an Induction Motor Speed control of synchronous motor. Applications 	

تأسست عام 1997

□ Evaluation Strategies:

		Percentage	Date
1. Exams	First Exam	20%	
	Second Exam	20%	
	Assignments	10%	
	Final Exam	50%	

		Teac	hing	Me	tho	dol	ogv:
--	--	------	------	----	-----	-----	------

4	T .	
1	Lecture	
1.	Locture	

□ Textbook:

Principles of Electric machines and power electrons; P.C.Sen, John Wiley & sons, Inc, 1997.

□ References:

- 1. Electric Machine Fundamentals, Stephen J. Chapman, Mc GRAW-Hill, 1996.
- 2. Small Electric Motors; (Helmut Moczzala, Jurgen Draeger, Herman KrouB, 1998.
- 3. Electric Machine; M.S Sarma, west publishing Company, 1994.
- 4. Electrical Power Technology; D.Tyler ,1998.

Engineering Program

Specialization	Common
Course Number	20304111
Course Title	Electrical Machines
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

جامعة الراهاء التطريهية

وصف المادة الدراسية:

This course throws light on all types of electrical machines ,transformers ,motors, ,generators ,special machines ,These machines which may face a diploma holder in his practical life ,He must be aware of many related things about these machines ,construction ,principles of operation , characteristics , applications , maintenance .

أهداف المادة الدراسية:

بعد دراسة هذه المادة يتوقع من الطالب أن يكون قادراً على تحقيق الأهداف التالية:

- 1. Explain & describe the operating principles, construction of generators.
- 2. Explain & describe the operating principles, construction of three phase synchronous generators.
- 3. Explain & describe the operating principles, construction & excitation of DC & AC motors & generators.

جامعة البلغاء التطبيقية

الوصف العام:

	.	, A	, , ,
رقم الوحدة	اسم الوحدة	محتويات الوحدة	الزمن
1.	Magnetic Circuits	 I-H relation B-H relation Magnetic equivalent circuit Hysteresis losses Eddy current losses Core losses 	2 weeks
2.	Transformers	 Construction and principle of operation EMF Equation Practical transformer; referred equivalent circuit Open – circuit test Short – circuit test Full – load copper losses. Efficiency ,all – day efficiency ,maximum efficiency Voltage regulation I deal transformer Auto transformer Three – phase transformers 	3 weeks
3.	Direct Current Machines	 Construction and principle of operation Armature windings Developed torque DC generators, types; characteristics, interlopes, armature reaction, voltage regulation. DC Motors, types; mechanical characteristics; losses and efficiency speed control 	4 weeks
4.	Three – Phase Indication Motors	 Introduction Construction and types Rotating magnetic field Induced E.M.F Slip 	1 weeks

جامعة البلقاء التطبيقية

5.	Single – phase Induction Motors	 Performance characteristics No – load test Blocked – rotor test Speed control ,pole changing , line voltage control; line frequency Control , rotor resistance control Double revolving field theory Types , capacitor – start motor ,split – phase motor ; shade – Pole motor, capacitor – start and run motor, universal motor. Characteristics and typical applications Speed control 	2 weeks
6.	Synchronous Machines	 Construction of 3-ph synchronous machine Synchronous generators, principle of operation, types characteristics, armature reaction, voltage regulation Synchronous motors, principle of operation, power and torque characteristics, P.F control speed control, applications 	2 weeks
7.	Special Machines.	 DC servomotor, construction and applications. AC servomotor, construction and applications. Stepper motor, types, construction and applications. Linear indication motor ,construction and applications Linear synchronous motor ,construction and applications 	1 week
8.	Vibration and Noise Problems in Electrical Machines	 Introduction Sound field quantities Noise measurements Vibration measurements Vibration and noise reduction Sound damping Technical solutions 	1 week

طرق التقييم المستخدمة:

		1 00
التاريخ	نسبة الامتحان من العلامة الكلية	الامتحانات
	%20	الأول
	%20	الثاني
	%10	أعمال الفصل
	%50	الامتحانات النهائية

طرق التدريس:

❖ يحدد عضو هيئة التدريس الطريقة المستخدمة من خلال (محاضرة، عرض، مناقشات، مختبرات).

الكتب و المراجع:

- 1. Principle of Electric Machines and Power Electronics, P.C. Sen, John Wiley and Sons, Inc, 1997
- 2. Small Electric Motors, Helmut Moczala, Jugen Draeger, Hermann Kraub, 1998
- 3. Electrical Machines, M.S.Sarma, West Publishing Company, 1994 Electrical machinery Fundamental, Stephen J. Chap man, Mc GRAW, Hill, 1996.

Engineering Program

Specialization	Common
Course Number	20304114
Course Title	Electrical Machines Lab
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

جامعة البلقاء التطبيقية

وصف المادة الدراسية:

This course focus ,on connection of various types of electrical machines , measurement of losses and efficiency ,speed control and mechanical characteristics of types of motors ,external characteristics of generators.

أهداف المادة الدراسية:

Upon the completion of the course, the student will be able to:

- 1. Make connection of all type of electrical machines , motors , generators and transformers
- 2. Measure; power ,current, voltage and cosup of electrical machines
- 3. Measure sped of different types motor
- 4. Draw the characteristics of transformers ,motors and generators
- 5. Calculate the parameters of electrical machines

جامعة البلقاء التطبيقية

الوصف العام:

رقم الوحدة	اسم الوحدة	محتويات الوحدة	الزمن
1.		Experiments on transformers no- load test, short- circuit test and loading test. Cage type, Capacitor-start motor, shaded- pole type	1 weeks
2.		Experiments on three – phase induction motors; wound rotor type and squirrel	2 weeks
3.		Experiments on single – phase induction motors split phase type .	3 weeks
4.		Experiments on synchronous machines; synchronous generator (alternator) and synchronous motor	2 weeks
5.		Experiments on DC motors ;shunt, series, compound	4 weeks
6.		Experiments on DC generators ;shunt, series, compound	4 weeks

طرق التقييم المستخدمة:

التاريخ	نسبة الامتحان من العلامة الكلية	الامتحانات
	30%	التقارير
	20%	الامتحان المتوسط
	50%	الامتحانات النهائية

طرق التدريس:

* تجارب عملية في المختبر

الكتب و المراجع : المراجع:

- 1. Lab. Sheets Prepared by Instructor
- 2. Manuals of each type of machines.
- 3. Electric machinery fundamentals, Stephen J.Chapman, 1996.

Engineering Program

Specialization	Common
Course Number	20403111
Course Title	Electronics
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

جامعة الراهاء التطريهية

وصف المادة الدراسية:

This course covers the basic subjects in electronics and you will study: Semiconductor theory, the diode, special purpose diodes, diode applications, bipolar junction transistor (BJT), field effect transistor (FET), operational amplifiers, thyristor and other devices.

أهداف المادة الدراسية:

Upon the completion of the course, the student will be able to:

- 1. Explain the basic structure of atoms.
- 2. Define and discuss semiconductors, conductors, insulators.
- 3. Identify the bias and applications of diode, zener ,varactor, and other special diodes.
- 4. Study of BJT & FET ,oscillators ,operational amplifiers, thyristors and other devices

جامعة البلغاء التطبيغية

الوصف العام:

رقم الوحدة	اسم الوحدة	محتويات الوحدة	الزمن
1.	Introduction to Semiconductors	 Atomic structure Semiconductors Conductors Insulators Covalent bonds Conduction in semiconductors Intrinsic and extrinsic semiconductors N-type and p- type semiconductors 	2 weeks
2.	The Diode	 P-N junction Biasing the diode Voltage – current characteristic of diode DC load line Operating point DC and AC resistance Comparison between silicon and germanium diodes Data sheet of diode 	3 weeks
3.	Special – Purpose Diode	 Zener diode (symbol, structure, principle of operation Zener diode applications (regular and limiter) Varactor diode. Light- emitting diode (LED), photodiode 	2 weeks
4.	Applications of The Diode	 Half – wave and full – wave rectifiers Filters and regulators in power supply circuits. 	1 weeks
5.	Bipolar Junction Transistor (BJT)	 Introduction Structure and principle of operation Characteristics and parameters. 	3 weeks

		 Regions of operation The DC operation point)load line) BJT as an amplifier and as switch Voltage divider bias and other bias methods Basic circuits connection (C.E, C.C, C.B) amplifier Data sheet of a BJT 	
6.	Field – Effect Transistor(FET)	 Introduction. Structure and principle of operation of junction field effect transistor (JFET). JFET characteristics, Parameters and biasing. Structure and principle of operation of metal oxide semiconductor field effect transistor (MOSFET). Enhancement and depletion types. MOSFET characteristics, Parameters and biasing. FET amplification, connections modes (C.S, C.D, C.G,) amplifiers, data sheet of a JFET and a MOSFET. 	2 week
7.	Oscillators	 Introduction Negative and positive feedback, (basic circuit, principle of operation, oscillation frequency calculation for the following oscillators. Phase – shift oscillator Colpitts and Hartley oscillators 	1 week

جامعة البلقاء التطبيقية

8.	Operational Amplifiers	 Symbol, terminals and basic op- amp representations (idea and practical) 	1 week
9.	Thyristor and Other Devices	 Structure ,principle of operation Characteristics curves and applications of the following devices: (Four – layer device, SCR (Silicon – controlled rectifier), siac, triac, Uninjunction transistor (UJT), and phototransistor 	1 week
10.	Introduction to Electronic Measurements	 Applications of oscilloscope in electronic measurements 	1 week

طرق التقييم المستخدمة:

التاريخ	نسبة الامتحان من العلامة الكلية	الامتحانات
بخ: / /	20% التاري	الأول
بخ: / /	20% التاري	الثاني
بخ: / /	10% التاري	أعمال الفصل
بخ: / /	50% التاري	الامتحانات النهائية

طرق التدريس:

**

Lectures

الكتب و المراجع:

- 1. Thomas L. Floyd, electrical devices, prentice hall international, 6th edition, 2002.
- 2. Basic operational Amplifiers and Linear Integrated Circuits , David Buchla ,Prentice Hall , 1999.
- 3. Electronics fundamental and Experiments, Cynthia B. Leshin, David Buchla, Tjomas L. Floyd, prentice hall international ,1999.

Engineering Program

Specialization	Common
Course Number	20403112
Course Title	Electronics Lab.
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

وصف المادة الدراسية:

❖ Lab in support of the basic electronics course, experiments in basic electronics have to cover all electronics devices (diode, zener diode, diode applications, BJT,op − amp ,oscillators ,SCR).

أهداف المادة الدراسية:

Upon the completion of the course, the student will be able to:

- 1. Become familiar with electronics devices and using data sheet.
- 2. Demonstrate how to test electronic devices by using AVO meter or through DC measurements.
- 3. Construct electronic circuit.
- 4. Investigate characteristics curves.
- 5. Calculate the value the values of currents and voltage and compare them with measured values

**

جامعة البلغاء التطبيقية

الوصف العام:

*

			17
رقم الوحدة	اسم الوحدة	محتويات الوحدة	الزمن
1.	The diode	 Forward and reverse biasing. 	2 weeks
		 Characteristic curve. 	
ļ		Data sheet.	
2.	The zener Diode.	 Breakdown voltage. 	2 weeks
		Regulation.	
		 Characteristic curve. 	
		Data sheet	
3.	Rectification Circuits with	 Half- wave and full- wave. 	1 week
	Filter and Regulator	 Ripple factor. 	
	-	 Line and load regulation 	
4.	A BJT testing by using AVO		1 week
	meter, and how to determine		
	the specifications of transistor		
	through data sheets		
5.	A BJT with Voltage – Divider		1 week
	Bias		
6.	A BJT as a switch		1 week
7.	Common Emitter Amplifier		1 week
	Circuit		
8.	Common collector Amplifier		1 week
	circuit		
9.	Common Base Amplifier		1 week
ļ	Circuits		
10.	Common source Amplifier		1 week
	Circuits		
11.	Operational Amplifier as		1 week
	Inverting and Noninverting		
	Amplifier	110	
12.	Operational Amplifier as		1 week
	Differentiator and Integrator	/ Shilly rittle	
13.	RC phase-shift Oscillator	الماسي والمنون وورد	1 week
14.	SCR as a switch	المالية المستطالين	1 week

طرق التقييم المستخدمة:

		, i.i. 55
التاريخ	نسبة الامتحان من العلامة الكلية	الامتحانات
	30%	التقارير
	20%	الامتحان المتوسط
	50%	الامتحانات النهائية

طرق التدريس: تجارب عملية في المختبر

الكتب و المراجع:

- 1. Instructional Lab. Sheets
- 2. Thomas L. Floyd "Principles of electric circuits" Electron flow version prentice hall International eighth edition 2006.
- 3. Robert L. Boy listed Introductory circuit analysis prentice hall International 1997.
- 4. Experiments in electronics Fundamentals and electric circuits fundamentals David Buchla -, prentice hall 2000.

Engineering Program

Specialization	Common
Course Number	20404211
Course Title	Microprocessors
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

Brief Course Description:

Introduction to microprocessors architecture, instruction set, assemblers and assembly language programming, software development, microprocessors applications.

Course Objectives:

To study the microprocessor architecture and relate that knowledge to the design of microprocessor based systems.

- 1. To learn design techniques for designing memory and I/O for microprocessor based systems.
- 2. To study the instruction set and applies that knowledge to the design of systems.
- 3. To study and learn some of the various software development tools available for writing and developing programs.
- 4. To study and learn some of microprocessors applications

جامعة البلغاء التطبيقية

Detailed Course Description:

Unit Number	Unit Name	Unit Content	Time Needed
1.	Introduction to microprocessors	 Computing and microprocessors Large and small computers Comparison of typical computers Semiconductor technologies Semiconductor memories 	2 Weeks
2.	Microprocessor architecture	 General computer architecture Registers Arithmetic unit Instruction handling area Stacks Examples of microprocessor architecture 	3 Weeks
3.	Microprocessor instruction set	 Computer instruction formats Addressing Methods Types of instructions Microprocessor instruction sets Examples of microprocessor instruction sets 	2 Weeks
4.	Microprocessor assembler	 Comparison of language levels Features of assemblers Features of microprocessor assemblers Examples of assemblers, Intel 8080 and Motorola 6800 	2 Weeks
5.	Assembly language programming	Simple programsLoops and arraysArithmetic	2 Weeks
6.	Software development for microprocessors	The tasks of software development	1 Week
7.	Some Applications of Microprocessos	 Test and instrumantaions Communications Computers Indstrial Business Equipment Transportaion Commercial applications 	2 Weeks

طرق التقييم المستخدمة:

التاريخ	نسبة الامتحان من العلامة الكلية	الامتحانات
التاريخ: الاسبوع السادس	%20	الأول
التاريخ: الاسبوع الثاني عشر	%20	الثاني
	%10	أعمال الفصل
التاريخ : الاسبوع السادس عشر	%50	الامتحانات النهائية
		المشروع و الوظائف
		المناقشات و تقييم المحاضرات

طرق التدريس:

- 1. المحاضرة
 - 2. المناقشة
- 3. عروض power point

الكتب والمراجع:

1. Introduction to microprocessors software, hardware, programming. Lance A Leventhal

Engineering Program

Specialization	Common
Course Number	20404212
Course Title	Microprocessors Lab.
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

وصف المادة الدراسية:

❖ Data transfer, Arithmetic Operations, Looping, Subroutines, General programs, Applications.

أهداف المادة الدراسية:

بعد دراسة هذه المادة يتوقع من الطالب أن يكون قادراً على تحقيق الأهداف التالية:

1. To illustrate classroom topics using a "hands-on" approach to the design, construction, and testing of a microprocessor-based computer and its associated sections - CPU, memory, I/O, interrupts, and programming

الوصف العام:

رقم الوحدة	محتويات الوحدة	اسم الوحدة	الزمن
1.	Introduction to Microprocessor		2 weeks
2.	Data transfer group		
3.	Arithmetic operations		2 weeks
4.	Logic Operation & comparisons		2 weeks
5.	Stack operations		2 weeks
6.	Condition & Unconditional		2 weeks
	Jumps		
7.	Looping		2 weeks
8.	Subroutines		
9.	General Programs		2 weeks
10.	Traffic Light Controller calculations		2 weeks

طرق التقييم المستخدمة:

التاريخ	نسبة الامتحان من العلامة الكلية	الامتحانات
التاريخ: مدة الفصل	%40	النقارير و المشاركة
التاريخ : الاسبوع الثامن	%20	الامتحان المتوسط
التاريخ : الاسبوع السادس عشر	%40	الامتحان النهائي
		المشروع و الوظائف
		المناقشات و تقديم المحاضرات

طرق التدريس:

- 1. المختبر
- 2. تطبيق التجربة
 - 3. المناقشة
- 4. عروض power point

الكتب والمراجع:-

- 1. كراسة مختبر بناء المعالج الدقيق و البرمجة / اعداد : كلية الامير فيصل الفنية
- 2. Introduction to microprocessors software, hardware, programming. Lance A Leventhal

جامعة البلغاء التطبيغية

Program	Engineering	
Specialization	Common	
Course Number	20307221	
Course Title	Programmable Logic Controllers	
Credit Hours	3	
Theoretical Hours	3	
Practical Hours	0	

جامعة الراقاء التطريقية

Brief Course Description:

Comparison between relays and programmable controllers ,basic structure of PLC,cycle-scan, CPU,memory,registers,timers and counters addresses , I/O modules, interfacing, programming instructions ,programming devices ,programming procedures, peripheral equipment, troubleshooting and maintenance

Course Objectives:

The objective of this course is to provide the necessary background information which will allow the student to have a good idea about programmable logic controllers .The student will be able to work well with PLCs, write programs. Make electrical wiring and do well with troubleshooting

Detailed Course Description

number	Unite name	Unite content Time neded		
1	PLC architecture	Block diagram of a general purpose		
		PLC		
		• Memory types and the memory		
		map of the PLC Describe I/O modules		
		Describe I/O modulesAnalysis of I/O modules		
		Purchasing PLCs		
2	General PLC Programming	Programming equipment		
_	procedures	Programming formats		
	procedures	Process Scanning Considerations		
3	PLC Programming Languages	Electrical wiring ladder diagrams		
		 Logic ladder diagrams 		
		 Ladder diagram rules 		
		Instruction sets		
		Examples		
4	Program control instructions	 Latching relay instruction 		
		 Master control input instruction 		
		 Immediate output instruction 		
		 One shot instruction 		
		 Jump instruction 		
		• Other instructions		
5	A -: 41 4' 11 4'	Examples		
5	Arithmetic and logic operations	Addition, subtraction, multiplication and division		
	and data manipulation	multiplication and division instructions		
		 Increment and decrement 		
		instructions		
		Logic AND, OR, NOR, XOR		
		instructions		
		 Duty cycle generator 		
		 Timers instructions 		

جامعة البلغاء التطبيقية

		Set, reset instruction
		 Move, compare, rotate and shift
		register instructions Examples
6	Programming counters	 Programming UP counters
		 Programming Down counters
		 Programming Up-Down counters
		 Programming ring
		countersExamples
7	Programming timers	 Programming TON and TOFF
		timers
		 Programming accumulator timers
		(TMR)
		Programming monostable (TMON)
		and retriggerable monostable
		timersExamples
8	Installation, trouble- shooting	Introduction
	and maintenance	 PLC status indicators and alarms
		 Troubleshooting flow charts and
		tables
		 System troubleshooting techniques.
		 PLC maintenance techniques

П

□ Evaluation Strategies:

		Percentage	Date
1. Exams	First Exam	20%	//
	Second Exam	20%	//
	Assignments	10%	
	Final Exam	50%	//
2. Homework and Projects			
3.Discussions and lecture			
Presentations			

□ Teaching Methodology:

4	T ,	
	Lecture	
	Lechne	
	Locture	

Text Books & References:

Text book:

1. Programmable Logic Controllers, Dr.Mazzoz Sulahat, Eng.Khaled Soboh, Eng Zeid Alhjazeen

References:-

- 1. Technicians guide to programmable controllers , third edition, Delmar publishers, 1995 Toronto Canada
- 2. Programmable logic controllers, principles and applications, third edition, Prentice Hall, 1995, U.S.A, John W.Webb, Ronald A.Reis.
- 3. The PLC workbook, programmable logic controllers made easy, prentice Hall. 1996, U.K, K.Flements Jewery. W.Jeffcoat

Program	Engineering	
Specialization	Common	
Course Number	20307222	
Course Title	PLCs Lab	
Credit Hours	1	
Theoretical Hours	0	
Practical Hours	3	

Brief Course Description:

The lab must support the PLC technology course.

The students should be conducted in small groups; each student must complete the assigned work in the given time

Course Objectives:

At the conclusion of this course the student will be able to:

- 1. Write the ladder diagrams which is necessary to carry out an automatic process.
- 2. Write programs in instruction list language which is necessary to cary out an automatic process.
- 3. Down load the programs to the PLC RAM using hand programmer or PC.
- 4. Troubleshoot the written programs and do the necessary correction

جامعة البلقاء التطبيقية

Detailed Course Description:

Lab number	Lab name	Lab conttent	Time Needed
1	Realizing a definite number of cycles for two double-acting cylinders	Conttent	riceded
2	Realizing discrete event-driven sequential control systems by using limit switches or proximity switches		
3	Realizing a discrete time-driven sequential coutrol system		
4	Investigating TON and TOFF timers with practical application		
5	Investigating TRTG and TMON timers with practical applications		
6	Investigating UP and down counters with practical applications		
7	Investigating UP-down and ring counter with practical applications		
8	Application of duty-cycle generators to generate train of pulses		
9	Application of the functions: move, compare, rotate and shift, registers and set-reset function		

□ Evaluation Strategies:

		Percentage	Date
1. Exams	Reports	20%	/
	Midterm Exam	20%	//
	Assignments	10%	
	Final Exam	50%	/

□ Teaching Methodology:

1. L	ab		

Text Books & References:

- 1. ELC-2001 Programmable Controller, Hardware Manual, Carlo Gavazzi Denmark.
- 2. S7-200 Programmable Controller, Quick Start manual, Semens 1995

Engineering Program

Specialty	Common
Course Number	20401111
Course Title	Power Electronics
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

Brief Course Description:

❖ Principles and Methods of Electric Power Conversion. Complementary Components and Systems. AC-to-DC Converters. AC-to-AC Converters. DC-to-DC Converters. DC-to-AC Converters. Switching Power Supplies. Power Semiconductor Devices. List of Principal Symbols. Semiconductor Power Switches. Diodes and Phase-Controlled Converters. Cycloconverters. Voltage-Fed Converters. Current-Fed Converters. Choppers. Basic calculations. Waveforms. Applications

Course Objectives:

Upon the completion of the course, the student will be able to:

- 1. Distinguish power electronics devices.
- 2. Identify power electronics devices
- 3. Use power electronics devices.
- 4. Investigate characteristics of power electronics devices.
- 5. Test and troubleshoot power electronics devices.
- 6. Provide basic calculations of power electronics devices.
- 7. Use energy converters with different loads

جامعة البلغاء التطبيغية

Detailed Course Description:

	etailed Course Description:			
Unit. number	Unite name	Unite content	Time Needed	
1.	Power Semiconductor Devices	Diodes. Thyristors. Triacs. Gate Turn-Off Thyristors (GTOs). Bipolar Power or Junction Transistors (BPTs or BJTs). Power MOSFETs. Static Induction Transistors (SITs). Insulated Gate Bipolar Transistors (IGBTs). MOS-Controlled Thyristors (MCTs). Integrated Gate-Commutated Thyristors (IGCTs). Power Integrated Circuits (PICs)		
2.	Diodes and Phase- Controlled Converters	 Diode Rectifiers. Thyristor Converters. Converter Control 		
3.	Frequency Changers	 Classification and applications. Block diagrams and principle of operation. Examples: Phase-Controlled Cycloconverters. Matrix Converters. High-Frequency Cycloconverters 		
4.	Voltage-Fed Converters	 Single-Phase Inverters. Three-Phase Bridge Inverters. Multi-Stepped Inverters. Pulse Width Modulation Techniques. Three-Level Inverters. Hard Switching Effects. Resonant Inverters. Soft-Switched Inverters. PWM Rectifiers 		
5.	Current-Fed Converters	 General Operation of a Six-Step Thyristor Inverter. Load-Commutated Inverters. Force-Commutated Inverters. Multi-Stepped Inverters. Inverters with Self-Commutated Devices. Current-Fed vs Voltage-Fed Converters 		
6.	Choppers	 Classification, principle of operation, applications 		

Evaluation Strategies:

L'unuation strategies.				
Exams		Percentage	Date	
Exams	First Exam	20%	//	
	Second Exam	20%	//	
	Final Exam	50%	//	
Homework and Projects		10%		
Discussions and lecture				
Presentations				

eaching Methodology:

Lectures

Text Books & References:

Textbook:

1. M. Rashid, Power Electronics Circuits, Devices and Applications, Upper Saddle River, NJ: Pearson Education, 3^d Edition, 2003.

References:

- 1. Reddy, Rama S., Fundamentals of Power Electronics, Boca Raton, Fla., CRC Press, 2000.
- 2. S.B. Dewan and A. Straugher, Power Semiconductor Circuits, John Wiley & Sons, USA, 1994

Engineering Program

Specialty	Common
Course Number	20401112
Course Title	Power Electronics Lab
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

Brief Course Description:

Test of semiconductor devices. Investigation of characteristics of power electronics devices. Investigation of rectifier, chopper, and inverter circuits under different loads (R, L-loads)

Course Objectives:

Upon the completion of the course, the student will be able to:

- 1. Distinguish power electronics devices.
- 2. Use power electronics devices.
- 3. Troubleshoot power electronics devices.
- 4. Control Thyristors and power transistors.
- 5. Connect the power electronics circuits.
- 6. Troubleshoot power electronics converters.
- 7. Provide basic calculations related to the output of power electronics converters

جامعة البلقاء التطبيقية

Detailed Course Description:

Unite number	Lab name	Lab content	Time Needed
1.	Identification and troubleshooting of power electronics semiconductor devices		(1 week)
2.	Investigation of characteristics of power electronics devices (Diodes, transistors, Thyristors)		(2 week)
3.	Investigation of firing circuit of Thyristor. (Firing circuit with AC voltage, firing circuit with DC voltage and firing circuit with pulse signals)		(2 weeks)
4.	Investigation of controlled rectifiers characteristics (Single phase and three phase circuits)		(3 weeks)
5.	Investigation of Chopping circuits		(1 week)
6.	Investigation of inverter characteristics. (Single phase and three phase circuits)		(3 weeks)
7.	Investigation of frequency changers characteristics		(2 weeks)

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

❖ Lab. work

Text Books & References:

References:

Instructional Lab. Sheets

Engineering Program

Specialization	Common
Course Number	20304241
Course Title	Protection and Control Devices
Credit Hours	2
Theoretical Hours	0
Practical Hours	2

وصف المادة الدراسية:

* The target of the course is to give the student the basic information and skills related to the most common control and protection devices ,The student shall gain the experience of selection and wiring and troubleshooting different control and protection devices such as fuses, circuit breakers , relay ,contactors ,and switches.

أهداف المادة الدراسية:

بعد دراسة هذه المادة يتوقع من الطالب أن يكون قادراً على تحقيق الأهداف التالية:

- 1. Use select & trouble shooting of fuses, relays, C.B.
- 2. Operate and check different types of relays.
- 3. Connect & investigate current & voltage transformers.

جامعة البلغاء التطبيقية

الوصف العام:

رقم الوحدة	محتويات الوحدة	اسم الوحدة	الوصلف العام. الزمن الزمن
1.	The Philosophy of Protective Relaying	 The function of protective relaying. Electrical sub-station. Fault calculations. Protective relaying. Essential qualities of protection. 	2 weeks
2.	Fuses	 The construction & types of low voltage fuses. 	3 weeks
3.	Circuit Controlling Devices	 Switches. Toggle, Push, and rotary switch. Micro switches, Rheostat. Time switch, Mercury, Pressure & Thermal switches. 	3 weeks
4.	Relays	 Induction relays. Over current relay. Over & under voltage relay. Moving coil relays. Thermal relays. 	2 weeks
5.	Current Transformer (CT)	 Voltage transformer Liner coupler. Connection of rectifiers. Rectifier, Amplifier & Oscillator. 	1 week
6.	Sulphur Hexafloride (SF ₆) Circuit Breaker	 Introduction. Physical properties of SF6 gas. Dielectric properties of SF6 gas. Arc extension in SF6 C.B. Minimum oil C.B. 	2 weeks
7.	Air Break C.B.	 Introduction. Construction of Air-Break C.B. Arc extension in Air-Break C.B. Air blast C.B. Principle of arc quenching in ABCBS 	3 weeks

طرق التقييم المستخدمة:

التاريخ	نسبة الامتحان من العلامة الكلية	الإمتحانات
	%20	الأول
	%20	الثاني
	%10	أعمال الفصل
	%50	الامتحانات النهائية

طرق التدريس:

❖ يحدد عضو هيئة التدريس الطريقة المستخدمة من خلال (محاضرة، عرض، مناقشات، مختبرات).

الكتب و المراجع:

- Textbook:
 - 1. Applied protective relaying. USA. Flourida, WH 1982.
- References:
 - 1. Protective relaying, N.C
 - 2. Power system protection, second edition, England, 1981.

Engineering Program

Specialization	Common
Course Number	20304242
Course Title	Protection and Control Devices Lab.
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

وصف المادة الدراسية:

* The course aims at giving the students practical skills in order to select ,wire troubleshoot and maintain the most common control and protection devices like fuses ,circuit breakers , relays ,contactors ,timers ,switches ,and measuring transformers.

أهداف المادة الدراسية:

بعد دراسة هذه المادة يتوقع من الطالب أن يكون قادراً على تحقيق الأهداف التالية:

- 1. Use & select relays, circuit breakers.
- 2. Contactors and different types used in power supplies & control circuits.
- 3. Construct and investigate protection and control circuits.

جامعة البلقاء التطبيقية

الوصف العام:

رقم الوحدة	محتويات الوحدة	اسم الوحدة	الزمن
1.	The Equipments That Used in Protection and Control Devices	 Fuses. Switches. Circuit Breakers. Timers. Relays. Power Transformer & Current transformer. 	8 weeks
2.	Star – Delta Control Box	 Introduction. Equipment Required. Procedure. Controlling Connection. Meters & indication lights. Trouble shooting. 	8 weeks

طرق التقييم المستخدمة:

التاريخ	نسبة الامتحان من العلامة الكلية	الإمتحانات
	30%	التقارير
	20%	الامتحان المتوسط
	50%	الامتحانات النهائية

طرق التدريس: ♦ تجارب عملية في المختبر

الكتب و المراجع: المراجع:

Laboratory Sheets Prepared by Instructor

