

Engineering Program

Specialization	Common
Course Number	20404121
Course Title	Digital Fundamentals
Credit Hours	2
Theoretical Hours	2
Practical Hours	0

وصف المادة الدراسية:

❖ Study of numerical systems, theory of Boolean algebra and logic circuits, applications to different types of circuits, study of flip-flops, counters, registers and accumulators, digital system memory including ROM, RAM, and EPROM.

أهداف المادة الدراسية:

- 1. To be familiar with number systems and its conversion.
- 2. To understand logic functions, gates, and Boolean algebra.
- 3. To understand combinational circuits.
- 4. To understand sequential logic circuits.
- 5. To be familiar with different types of memory.

Al-Balqa' Applied University

جامعة البلغاء التطبيقية

الوصف العام:

**

رقم الوحدة	اسم الوحدة	محتويات الوحدة	الوصف العا
1.	NUMBERS SYSTEM AND CODES	 Introduction Decimal, binary, octal and hexadecimal numbers system Number system conversion Binary arithmetic 1's and 2's complement of binary number binary coded decimal (BCD) digital coded (Gray, Excess-3 and ASC II codes) 	2 Weeks
2.	LOGIC GATES	 The inverter The AND gate The OR gate The NAND gate The NOR gate The Exclusive-OR and Exclusive-AND gates Application of logic gates in industry 	2 Weeks
3.	BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION	 Boolean operation and expressions Laws and rule of Boolean algebra De Morgan's theorem Simplifications using Boolean algebra Standard forms of Boolean expression The Karnaugh map Karnaugh map minimization 	2 Weeks
4.	COMBINATIONA L LOGIC	 Implementing combinational logic The universal property of NAND and NOR gates Implementation using NAND and NOR gates Operation with pulse waveforms Troubleshooting and application 	2 Weeks
5.	FUNCTIONS OF COMBINATIONA L LOGIC	 Half adders, full adders, parallel adders Comparators Encoders and decoders Multiplexing 	2 Weeks

Al-Balqa' Applied University

جامعة البلغاء التطبيقية

		 Application 	
6.	FLIP-FLOPS	 Sequential logic circuits Edge-trigged Flip-Flops (S-R, J-K, D) Master-slave Flip-Flops Flip-Flop operation characteristic Flip-Flops application 	2 Weeks
7.	COUNTERS	 Asynchronous counters Synchronous counters Up/Down synchronous Cascaded counters Counter application 	2 Weeks
8	SHIFT REGISTERS	 Basic shift registers functions Serial in / serial out shift registers Serial in / parallel out shift registers parallel in / serial out shift registers parallel in / parallel out shift registers 	Week
9	MEMORIES	 Basic of semiconductors memories Read-only memories (ROMs) Programmable ROMs (PROMs and EPROMs) Read/Write Random –Access Memories(RAMs) Memory expansion 	Week

%20	الأول
%20	الثاني
%10	أعمال الفصل
%50	الامتحانات النهائية
	المشروع و الوظائف
	المناقشات و تقديم المحاضر ات

طرق التدريس:

1. محاضرات

2. مناقشات

3. عروض power point

الكتب والمراجع:

- 1. Tomas Floyd "Digital Fundamentals" sixth edition, Prentice-Hall, Inc.NJ.,USA,1997
- 2. William Kleitz, "Digital Electronics a practical approach" third edition, prentice-Hall career &technology Englewood Clifts, NJ., USA, 1993.
- 3. Morris Manor: digital design, Prentice Hall

Engineering Program

Specialization	Common
Course Number	20404122
Course Title	Digital Fundamentals Lab
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

وصف المادة الدراسية:

Testing and troubleshooting instruments, Logic circuits, adders, comparators, encoders and decoders, flip-flops, counters, registers, memories RAM, ROM, EPROM

أهداف المادة الدراسية:

1. This lab course is to provide an introduction to the characteristics of digital logic and the design, construction, testing and debugging of simple digital circuits.

الوصف العام:

			· F
رقم التجربة	اسم التجربة	محتويات التجربة	الزمن (أسبوع)
1.	Testing and troubleshooting instruments		Week
2.	Logic gates	NOT, OR, AND, NOR, NAND, XOR, XNOR	2 Weeks
3.	Boolean algebra and Demorgan theorems		Week
4.	Karnaugh maps		Week
5.	Half-adders, full adders, and parallel adders		Week
6.	comparator		Week
7.	encoders		Week
8.	Decoders and seven- segment display		Week
9.	Multiplexer and de- multiplexer		Week
10	Flip-flop		Week
11.	Asynchronous counters		Week
12	synchronous counters		Week
13	Registers		Week
14	memories	- ME - 1884	Week
15	ALU (Arithmetic Logic Unit)		Week

طرق التقييم المستخدمة:

30%	التقارير و المشاركة
20%	الامتحان المتوسط
50%	الامتحان النهائي
	المشروع و الوظائف
	المناقشات و تقديم المحاضرات

طرق التدريس:

- 1. المختبر
- 2. تطبيق التجربة
 - 3. المناقشة
- 4. عروض power point

الكتب والمراجع:

- 1. كراسة مختبر الالكترونيات الرقمية / اعداد: مدرس المادة
- 2. William Kleitz, "Digital Electronics a practical approach" third edition, prentice-Hall career &technology Englewood Clifts, NJ., USA, 1993.
- 3. Morris Manor: digital design, Prentice Hall

