Engineering Program | Specialization | Common | |-------------------|----------------------| | Course Number | 20404121 | | Course Title | Digital Fundamentals | | Credit Hours | 2 | | Theoretical Hours | 2 | | Practical Hours | 0 | #### وصف المادة الدراسية: ❖ Study of numerical systems, theory of Boolean algebra and logic circuits, applications to different types of circuits, study of flip-flops, counters, registers and accumulators, digital system memory including ROM, RAM, and EPROM. أهداف المادة الدراسية: - 1. To be familiar with number systems and its conversion. - 2. To understand logic functions, gates, and Boolean algebra. - 3. To understand combinational circuits. - 4. To understand sequential logic circuits. - 5. To be familiar with different types of memory. # Al-Balqa' Applied University ## جامعة البلغاء التطبيقية ### الوصف العام: ** | رقم
الوحدة | اسم الوحدة | محتويات الوحدة | الوصف العا | |---------------|---|--|------------| | 1. | NUMBERS SYSTEM AND CODES | Introduction Decimal, binary, octal and hexadecimal numbers system Number system conversion Binary arithmetic 1's and 2's complement of binary number binary coded decimal (BCD) digital coded (Gray, Excess-3 and ASC II codes) | 2
Weeks | | 2. | LOGIC GATES | The inverter The AND gate The OR gate The NAND gate The NOR gate The Exclusive-OR and Exclusive-AND gates Application of logic gates in industry | 2
Weeks | | 3. | BOOLEAN
ALGEBRA AND
LOGIC
SIMPLIFICATION | Boolean operation and expressions Laws and rule of Boolean algebra De Morgan's theorem Simplifications using Boolean algebra Standard forms of Boolean expression The Karnaugh map Karnaugh map minimization | 2
Weeks | | 4. | COMBINATIONA
L LOGIC | Implementing combinational logic The universal property of NAND and NOR gates Implementation using NAND and NOR gates Operation with pulse waveforms Troubleshooting and application | 2
Weeks | | 5. | FUNCTIONS OF
COMBINATIONA
L LOGIC | Half adders, full adders, parallel adders Comparators Encoders and decoders Multiplexing | 2
Weeks | # Al-Balqa' Applied University ## جامعة البلغاء التطبيقية | | | Application | | |----|--------------------|---|------------| | 6. | FLIP-FLOPS | Sequential logic circuits Edge-trigged Flip-Flops (S-R, J-K, D) Master-slave Flip-Flops Flip-Flop operation characteristic Flip-Flops application | 2
Weeks | | 7. | COUNTERS | Asynchronous counters Synchronous counters Up/Down synchronous Cascaded counters Counter application | 2
Weeks | | 8 | SHIFT
REGISTERS | Basic shift registers functions Serial in / serial out shift registers Serial in / parallel out shift registers parallel in / serial out shift registers parallel in / parallel out shift registers | Week | | 9 | MEMORIES | Basic of semiconductors memories Read-only memories (ROMs) Programmable ROMs (PROMs and EPROMs) Read/Write Random –Access Memories(RAMs) Memory expansion | Week | | %20 | الأول | |-----|------------------------------| | %20 | الثاني | | %10 | أعمال الفصل | | %50 | الامتحانات النهائية | | | المشروع و الوظائف | | | المناقشات و تقديم المحاضر ات | ### طرق التدريس: 1. محاضرات 2. مناقشات 3. عروض power point ### الكتب والمراجع: - 1. Tomas Floyd "Digital Fundamentals" sixth edition, Prentice-Hall, Inc.NJ.,USA,1997 - 2. William Kleitz, "Digital Electronics a practical approach" third edition, prentice-Hall career &technology Englewood Clifts, NJ., USA, 1993. - 3. Morris Manor: digital design, Prentice Hall # Engineering Program | Specialization | Common | |-------------------|--------------------------| | Course Number | 20404122 | | Course Title | Digital Fundamentals Lab | | Credit Hours | 1 | | Theoretical Hours | 0 | | Practical Hours | 3 | #### وصف المادة الدراسية: Testing and troubleshooting instruments, Logic circuits, adders, comparators, encoders and decoders, flip-flops, counters, registers, memories RAM, ROM, EPROM ### أهداف المادة الدراسية: 1. This lab course is to provide an introduction to the characteristics of digital logic and the design, construction, testing and debugging of simple digital circuits. ### الوصف العام: | | | | · F | |-------------|---|---------------------------------------|------------------| | رقم التجربة | اسم التجربة | محتويات التجربة | الزمن
(أسبوع) | | 1. | Testing and troubleshooting instruments | | Week | | 2. | Logic gates | NOT, OR, AND, NOR, NAND,
XOR, XNOR | 2
Weeks | | 3. | Boolean algebra and
Demorgan theorems | | Week | | 4. | Karnaugh maps | | Week | | 5. | Half-adders, full adders, and parallel adders | | Week | | 6. | comparator | | Week | | 7. | encoders | | Week | | 8. | Decoders and seven-
segment display | | Week | | 9. | Multiplexer and de-
multiplexer | | Week | | 10 | Flip-flop | | Week | | 11. | Asynchronous counters | | Week | | 12 | synchronous counters | | Week | | 13 | Registers | | Week | | 14 | memories | - ME - 1884 | Week | | 15 | ALU (Arithmetic Logic
Unit) | | Week | ### طرق التقييم المستخدمة: | 30% | التقارير و المشاركة | |-----|-----------------------------| | 20% | الامتحان المتوسط | | 50% | الامتحان النهائي | | | المشروع و الوظائف | | | المناقشات و تقديم المحاضرات | ### طرق التدريس: - 1. المختبر - 2. تطبيق التجربة - 3. المناقشة - 4. عروض power point ### الكتب والمراجع: - 1. كراسة مختبر الالكترونيات الرقمية / اعداد: مدرس المادة - 2. William Kleitz, "Digital Electronics a practical approach" third edition, prentice-Hall career &technology Englewood Clifts, NJ., USA, 1993. - 3. Morris Manor: digital design, Prentice Hall