

Engineering Program		
Specialization	Common	
Course Number	20204121	
Course Title	Strength of Materials	
Credit Hours	2	
Theoretical Hours	2	
Practical Hours	0	

Brief Course Description:

Principles of statics including equilibrium and static equivalence. Determination of moment and force resultants in slender members. Introduction to mechanics of deformable bodies; concepts of stress and strain, classification of material behavior, stress-strain relations and generalized Hook's Law. Application to engineering problems involving members under axial load, torsion of circular rods and tubes, bending in beams, buckling of columns.

Course Objectives:

After presenting this course student should:

- 1. Analyze the different types of loading
- 2. Classify the types of beams support.
- 3. Distinguish between the effect of concentrated or distributed load

Detailed Course Description:

Unit Number	Unit Name	Unit Content	Time Needed
1.	Axial Loading	 Introduction, static review, types of loads Normal and shear stresses, concept of strain Stress strain diagram Hokes law and modulus of elasticity (Young's modulus) True stress and true strain Strain energy and factor of safety Stresses in stepped bars Stresses in compounded columns Poison's ratio Stresses in thin-walled vessels due to internal pressure 	
2.	Torsion	 Torsion stress and strain in solid and hollow shafts Torsion in stepped shafts Power transmitted by rotating shafts Twist angle in elastic range 	
3.	Bending of beams	 Bending stresses and axial strain in symmetric sections Curvature of beams under bending Types of bending loads, concentrated and uniformly distributed loads Shear and bending moment diagrams for beams under concentrated and uniformly distributed loads 	
4.	Buckling of columns	 Euler's formula for pin ended columns Types of end conditions of columns Column design under axial 	

تأسست عام 1997

loading	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	
	Second Exam	20%	
	Final Exam	50%	
Homework and Quizzes		10%	

Teaching Methodology:

Lectures and presentations

Textbook:

1. Mechanics of materials R.C. Hibller 5th edition , Prentice Hall, 2003

Program Engineering			
Specialty	Common		
Course Number	20204122		
Course Title	Strength of Materials Lab		
Credit Hours	1		
Theoretical Hours	0		
Practical Hours	3		

Brief Course Description:

✤ Applying theory gained within the strength of materials theoretical through practical experimentation

Course Objectives:

After presenting this course student should:

- 1. Distinguish between the behavior of brittle and ductile materials under tensile.
- 2. Distinguish between the behavior of brittle and ductile materials under torsion test.

Unit Number	Unit Name	Unit Content	Time Needed
1.	Tensile test	 Identification of the tensile testing machine, its specifications and standard specimen Test procedure Performing the test on different specimen Plotting stress-strain curve using load-elongation curve Studying the effect of percentage of carbon in steel on the tensile test results Comparison among mild steel Cast iron, brass and aluminum 	
2.	Compression test	 Test procedure Compression test specimen Plotting stress-strain for compression test Comparison the test results for different specimen 	
3.	Impact test	 Identification of the pendulum Impact testing machine and standard specimen Test procedure and the specifications of specimen (Izod-Charpy) Performing and comparing the test results for specimen under different temperatures 	
4.	Hardness tests	 Elements of the 	<i>.</i>

Detailed Course Description:

Al-Balqa' Applied University

جامعة البلغاء التطبيغية

تأسست عام 1997

		hardness testing machine	
		 Testing specimen and 	
		procedure	
		 Conducting hardness 	
		tests using Brinnell method,	
		Vickers method and	
		Rockwell method	
5.	Non-destructive inspection NDI	 Elements of the 	
	-	following NDI equipment:	
		X-ray inspection	
		Ultrasonic inspection	
		Magnetic particle inspection	
		 Methods of 	
		determination of internal	
		defects of metals	

Evaluation Strategies:

Exams		Percentage	Date
Exams	Reports	30%	//
	Med- term	20%	/
	Final Practical	50%	/
	Exam		

