

تأسست عام1997

Engineering Program			
Specialization	Technology of remote industrial sensing and controlling		
Course Number			
Course Title	Signal conditioning circuits Lab		
Credit Hours	3		
Theoretical Hours	0		
Practical Hours	1		

جامعة البلغاء التطبيغية

Brief Course Description:

Experimental study and investigation of signal conditioning circuits and their application in measurement and control. Working with real examples and applications.

Course Objectives:

Upon the completion of this course, the student will be able to:

- 1. Build signal conditioning circuit for measurement system
- 2. Build signal conditioning circuit for control system
- 3. Distinguish between real and ideal circuits
- 4. Use PC in in circuit design and testing

تأسست عام1997

Chapter No.	Course Description: Content title	Unit content	Time Needed	
1	Experiment 1: Introduction to Multisim/Proteus	 Tools, Menus, workspace Opening and running samples Creating a project /file Saving, closing edition Sources, components, data plotting and presentation 		
2	Experiment 2: Power supply design	 Debugging and testing Understanding +5V, V_{CC}, V_{EE}, GND, AGND,DGND and common Design unipolar, polar voltage source Current limiters Rectifier base power supply Voltage regulators Voltage divider as a voltage regulator Zenor diode circutes LM7805 and LM7809 Design consideration 		
3	Experiment 3: Balancing circuit design	 Voltage Divider circuit and its Application Bridge Circuit design AC and DC bridges Real application Potentiomteric sensor Thermoresostor Thermistor LDR 		
4	Experiment 4: Filter Design	 Passive and active filters Understanding RC filters Low Pass filter design High Pass filter design Band Pass filter design Band-reject filter 		
4	Experiment 5 Operational amplifiers :	 Ideal and practical Amplifiers Ideal Op amp 		

n.

*تطبق هذه الخطة الدر اسية اعتبارًا من بداية العام الجامعي

قيقيبكتاا داتهابال قعمام

تأسست عام1997

5	concepts Operational Amplifiers : instrumentation and measurement	 LM741, μA 741 Pin diagram Packaging : DIP, SOIC Voltage follower circuit and its application Comparator circuit and its Application Schmitt Trigger circuit Inverting and non-inverting op-amps amplifiers Difference amplifier and its application Instrumentation amplifier and its application AD620, AD 624 Comparison between difference and instrumentation amplifiers
6	Operational Amplifiers : Mathematical operations •	 Proportional amplifier and its application Integrator circuit : ideal and practical Differentiator circuit Logarithmic amplifier and its application Application of Mathematical operations in control and measurement system
7	Converters 1: electrical parameters -	 Voltage to current converter and its application in measurement and control Current to voltage converter and its application in measurement and control Impedance matching
8	Converters 2: Digital conditioning circuits -	 Analog to Digital converter Concept IC based ADC, application Digital to analog converter Summing amplifier IC based DAC

*تطبق هذه الخطة الدراسية اعتبارًا من بداية العام الجامعي

مامعة البلغاء التطبيقية

تأسست عام1997

		Application	
9	Data conditioning elements	 Transistor as a switch Phototransistor and Optoisolator Isolation transformer Applications of MOSFETs TTL and CMOS 	
10	Term project		

تأسست عام1997

Evaluation Strategies:

		Percentage	Date	
1. Exams	Mid Exam	20%	/	/20
	Lab activates and	30%	/	/20
	reports			
	Final Exam	50%	/	/20
Total		100%		

Teaching Methodology:

- Working with datasheet
- Practical experimental work in small groups
- PowerPoint slides
- Term projects

Text Books & References:

Textbooks

1. Labartory sheet prepared by instructor

References

Circuit Analysis with Multisim , David Báez-López and Félix E. Guerrero-Castro 2011

MultisimTM 8 Simulation and Capture, Component Reference Guide,